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ABSTRACT
Background Diabetic kidney disease (DKD) is responsible for close to half of all ESKD cases. Although
unbiased gene expression changes have been extensively characterized in human kidney tissue samples,
unbiased protein-level information is not available.

Methods We collected human kidney samples from 23 individuals with DKD and ten healthy controls,
gathered associated clinical and demographics information, and implemented histologic analysis. We
performed unbiased proteomics using the SomaScan platform and quantified the level of 1305 proteins
and analyzed gene expression levels by bulk RNA and single-cell RNA sequencing (scRNA-seq). We
validated protein levels in a separate cohort of kidney tissue samples as well as in 11,030 blood samples.

ResultsGlobally, human kidney transcript and protein levels showed only modest correlation. Our analysis
identified 14 proteins with kidney tissue levels that correlated with eGFR and found that the levels of 152
proteins correlated with interstitial fibrosis. Of the identified proteins, matrix metalloprotease 7 (MMP7)
showed the strongest association with both fibrosis and eGFR. The correlation between tissue MMP7
protein expression and kidney function was validated in external datasets. The levels of MMP7 RNA
correlated with fibrosis in the primary and validation datasets. Findings from scRNA-seq pointed to
proximal tubules, connecting tubules, and principal cells as likely cellular sources of increased tissueMMP7
expression. Furthermore, plasmaMMP7 levels correlated not only with kidney function but also associated
with prospective kidney function decline.

ConclusionsOur findings, which underscore the value of human kidney tissue proteomics analysis, identify
kidney tissue MMP7 as a diagnostic marker of kidney fibrosis and blood MMP7 as a biomarker for future
kidney function decline.

JASN 34: 1279–1291, 2023. doi: https://doi.org/10.1681/ASN.0000000000000141

INTRODUCTION

Diabetic kidney disease (DKD) is a leading cause of
ESKD. It is estimated that close to 40% of patients
with diabetes develop DKD defined as albuminuria
or an impairment of kidney function (,60 ml/min
per 1.73 m2). Although improved glycemic and
blood pressure control have lowered the risk of
kidney disease development, we still cannot predict
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who with diabetes mellitus (DM) will develop DKD or prog-
ress to ESKD. The kidney failure risk equation (KFRE) has
emerged as an important tool to predict the risk of renal failure
in subject with eGFR ,60 ml/min per 1.73 m2.1,2 Indeed,
just including four variables, the KFRE can predict patients
ESKD risk with high precision (c-statistics .0.92). Unfortu-
nately, KFRE does not perform well for subjects with stage 1–2
CKD. The degree of albuminuria shows a strong correlation
with kidney disease progression, and it is most frequently used
by Phase 2 and 3 clinical studies to enrich subjects who likely
develop kidney failure. Recently, we have analyzed histological
changes in 859 human kidney tissue samples using an un-
biased scoring system.3 We showed that while at advanced
CKD stages (CKD 3–5) histological changes strongly correlate
with kidney function, this is not the case for early (stage 1–2)
CKD. We identified several samples with relatively severe
structural damage despite preserved kidney function. Impor-
tantly, the degree of fibrosis improved the future kidney func-
tion decline estimation, indicating the critical role of fibrosis
and tissue analysis for better prognostication.

At present, there is an important need to identify biology-
driven biomarkers for DKD subtypes or patients who will
progress to ESKD. Blood proteins are considered probably the
most ideal biomarkers, as they represent an easily accessible
body fluid. Blood protein levels are also tightly regulated
resulting in relatively low interindividual variation. Targeted
biomarker studies indicated TNF receptor superfamily mem-
bers 1A and 1B,4 soluble urokinase receptor5 as potential
biomarkers for kidney outcomes. Recent studies reported
the results from unbiased blood proteomic analyses,6–11 in-
cluding the results from the Atherosclerosis Risk In Commu-
nities (ARIC) Study in which the team reported 12 proteins of
inflammation and other processes as prognostic biomarkers.7

Tissue gene expression analysis has been extensively used to
understand disease mechanisms and for biomarker discovery.
Unbiased RNA sequencing has identified a large number of
genes whose levels correlate with kidney function, fibrosis, or
glomerulosclerosis.12–16 The recent development in droplet-
based sequencing enabled single-cell level gene expression and
epigenome analysis and illuminated new genes, cell types, and
disease mechanisms. Although gene expression is an impor-
tant estimator of protein expression, protein levels are also
determined by multiple other mechanisms. Indeed, recent
studies have indicated relatively poor correlation between
gene expression and protein levels in blood samples.17–19

The liver is likely an important source of blood proteins;
therefore, the poor correlation of protein and RNA levels in
blood samples might be less surprising. Correlations between
tissue gene expression and protein levels remain to be estab-
lished. Protein detection and quantification has been histor-
ically challenging. Although improvements in mass
spectrometry platforms aided new discoveries for kidney
diseases,20,21 much work remains to be conducted to better
understand protein expression in the diseased kidney. The
recent development of high-throughput aptamer-based

proteomics technologies, such as SomaScan, has enabled
quantification of over 1000 proteins in a biological sample.22,23

SomaScan was successfully used in large clinical and epide-
miologic studies to analyze plasma protein levels of CKD and
DKD subjects,6–11 but to the best of our knowledge, unbiased
proteomics studies have not been performed in human kidney
tissue samples.

Here, we report our first in class study to apply unbiased
affinity proteomics to a cohort of control and DKD kidneys.
Here, we identify matrix metalloproteinase 7 (MMP7), a mem-
ber of the matrix metalloproteinase family, as a biomarker of
fibrosis in patients with DKD. Single-cell gene expression in-
dicates that tubule cells are the main source of MMP7; fur-
thermore, we show that plasma MMP7 is a biomarker for the
risk of kidney failure in a large external cohort.24

METHODS

Human Kidney
Kidney tissue samples were obtained from surgical nephrecto-
mies in both DKD and control group. Only the normal, un-
affected part of the tissue (taken at least 2 cm away from the
cancer) was used for our analysis. Nephrectomies were deiden-
tified, and the corresponding clinical information including age,
race, sex, diabetes and hypertension (HTN) status, as well as
creatinine values were collected through an honest broker. This
study was approved by the Institutional Review Board of the
University of Pennsylvania and by the Committee of Human
Studies at the Joslin Diabetes Center. No informed consent was
obtained because this study was considered “exempt.”

Diagnosis of DKD
Adjacent tissue sample from each kidney was formalin-fixed
paraffin-embedded and stained with hematoxylin eosin and
periodic acid–Schiff. Kidney sections were evaluated by an
expert renal pathologist who was not aware of the clinical
information. We used an unbiased scoring system as we
published earlier.3 DKD was defined as persistent reduction

Significance Statement

Although gene expression changes have been characterized in
human diabetic kidney disease (DKD), unbiased tissue proteomics
information for this condition is lacking. The authors conducted an
unbiased aptamer-based proteomic analysis of samples from pa-
tients with DKD and healthy controls, identifying proteins with levels
that associate with kidney function (eGFR) or fibrosis, after adjusting
for key covariates. Overall, tissue gene expression only modestly
correlated with tissue protein levels. Kidney protein and RNA levels
of matrix metalloproteinase 7 (MMP7) strongly correlated with fi-
brosis and with eGFR. Single-cell RNA sequencing indicated that
kidney tubule cells are an important source of MMP7. Furthermore,
plasma MMP7 levels predicted future kidney function decline.
These findings identify kidney tissue MMP7 as a biomarker of fi-
brosis and blood MMP7 as a biomarker for future kidney func-
tion decline.
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in eGFR to,60 ml/min per 1.73 m2 in a patient with type 2
diabetes, according to the guidelines of the National Kidney
Foundation–Kidney Disease Outcome Quality Initiative25,26 in
addition to having mesangial expansion and diabetic glomer-
ulosclerosis on light microscopy, consistent with at least class II
diabetic nephropathy of the Renal Pathology Society criteria.27

Tissue Handling
Kidneys were removed, immediately snap-frozen in liquid
nitrogen, and stored at 280°C until homogenization. Tissue
was cryopulverized using a TissueLyser instrument (QIAGEN,
Hilden, Germany), and protein was extracted using a lysis
buffer of tissue protein extraction reagent (Thermo Fisher
Scientific, Waltham, MA) containing protease inhibitors (Halt;
Thermo Fisher Scientific). Protein concentrations were mea-
sured using bicinchoninic acid protein assay (Pierce; Thermo
Fisher Scientific).

Kidney Tissue Proteomics
We used the SomaScan assay platform (SomaLogic, Boulder,
CO) at the Genomics Proteomics Core at Beth Israel Deaconess
Medical Center, Harvard affiliate, Boston, MA, for proteomics.
Thousand three hundred and five targeted proteins or protein
complexes in the primary dataset (n533, ten controls and 23
DKD tissue samples) and 7596 targeted proteins or protein
complexes in the kidney tissue validation dataset (n5186, in
preparation) were measured. The SomaScan platform technol-
ogy and its performance characteristics have been previously
described.6,22,23 In brief, the assay uses slow off-rate modified
DNA aptamers (SOMAmers) capable of binding to specific
protein targets with high sensitivity and specificity. Protein
levels are captured in relative fluorescence units. Aptamers
used for the primary dataset detecting 1305 proteins are de-
scribed in Supplemental Spreadsheet 1. To account for variation
across kidney extracts, calibrator and buffer samples were added
in a 96-well plate. Quality control was performed at the sample
and SOMAmer level by the manufacturer’s recommendations.
The former involved the use of the hybridization controls,
whereas the latter involved control SOMAmers for data nor-
malization and calibration samples. The sample data were first
normalized to remove within-run hybridization variation fol-
lowed by adaptive normalization by maximum likelihood with
point and variance estimates from a normal US population. The
intensity of protein signals was transformed base 2 logarithmic
(log2) values for further analysis.

Blood Proteomics Dataset
The validation dataset for blood proteomics was drawn from the
ARIC Study, an ongoing cohort of individuals recruited from
four US communities: suburbs of Minneapolis, Minnesota;
Jackson, Mississippi; Forsyth County, North Carolina; and
Washington County,Maryland.24 Enrollment occurred between
1987 and 1989, with subsequent visits in 1990–1992 (visit 2),
1993–1995 (visit 3), 1996–1998 (visit 4), 2011–2013 (visit 5),
2016–2017 (visit 6), and 2018–2019 (visit 7). Participants with

(n51623) or without (n59407) DMwho attended visits 2, were
free of ESKD, had eGFR measures, and agreed to participate in
research were included. Urine was not collected at the study
visits. MMP7 levels were measured using the SomaScan v4
platform. Outcomes evaluated including 50% decline in eGFR
occurring at a subsequent study visit and ESKD, defined
through linkage with the US Renal Data System.28 Associations
between log2-transformed MMP7 and outcomes were assessed
using Cox regression. Twomodels were used: model 1, adjusting
for age, sex, and a composite race-center variables, andmodel 2,
additionally adjusting for systolic blood pressure, use of anti-
hypertensive medications, prevalent cardiovascular disease,
eGFR on the basis of both creatinine and cystatin, HDL cho-
lesterol, prevalent smoking, and total cholesterol. The last day of
follow-up for events was December 31, 2019.

Weighted Gene Coexpression Network Analysis for
Proteomics
To extract sets of proteins coexpressed within the dataset, the
weighted gene coexpression network analysis (WGCNA) pack-
age29 in the R environment (version 1.71) was applied. Clus-
tering protein trees were established based on the similarity of
protein expression profiles across samples using the adjacency
function with a signed network. Thereafter, the Dynamic
Hybrid Tree Cut algorithm was used to cut the hierarchal
clustering tree, and modules were defined as branches from
the tree cutting. A soft thresholding power of ten was selected
based on the scale independence chart, as described in the
WGCNA tutorials. The randomly color-labeled each module
was summarized by the first principal component of the
standardized module expression profiles (referred to as mod-
ule eigenprotein). We set the minimum module size to 30
proteins, and these modules were merged when the difference
between their module eigenprotein profiles was ,0.25. The
module eigenproteins were then analyzed for correlations with
clinical phenotypes, such as eGFR and interstitial fibrosis.

Pathway Analysis
Genes encoding proteins with expression levels showing sig-
nificant linear correlation with kidney interstitial fibrosis were
separately imported into the Database for Annotation, Visu-
alization, and Integrated Discovery (DAVID, version v2022q2)
bioinformatics resource (https://david.ncifcrf.gov/),30 where
they were analyzed using Gene Ontology. The WGCNA mod-
ules were analyzed similarly.

Cluster Analysis
Cluster analysis of proteomics in the WGCNA brown module
was performed using Molecular Complex Detection
(MCODE) plug-in, which provides a novel clustering algo-
rithm to screen the modules of the protein–protein interaction
network through Cytoscape.31,32 MCODE scores of .3 and
the number of nodes .3 were set as cut-off criteria with the
default parameters (degree cutoff $2, node score cutoff
$2, K-core $2, and max depth5100).
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Kidney Tissue RNA-seq
RNA isolation, sequencing, and analysis were performed as
previously published.33–35 Reads were aligned to the human
genome (hg19/GRCh37) using STAR (version 2.7.3a). Gene
and isoform expression levels of transcript per million (TPM)
were estimated using RNA-Seq by Expectation Maximization
(version 1.3.0). Log2-transformed (TPM11) values were used
for further analysis.

Single-Cell RNA-seq Data Analysis
Reanalysis of the single-cell dataset was performed using
Seurat (version 4.0.3). The original Seurat object used in
this study was obtained from the NIDDK Kidney Precision
Medicine Project (KPMP) repository (https://atlas.kpmp.org/
repository/).36 This dataset was downloaded as an h5 Seurat
object (File name: “521c5b34-3dd0-4871-8064-61d3e3f1775a_
PREMIERE_Alldatasets_08132021.h5Seurat”), with quality con-
trol and clustering already performed by the KPMP team. The
Seurat object contains two types of clustering, one of which
named “subclass.l1” having 13 clusters was applied in this
study. Living donor (LD) and DKD subjects were subset from
this Seurat object and used for further analysis. The DimPlot
function was used to generate the Uniform Manifold Approx-
imation and Projection (UMAP) plots. The DotPlot function
was used to visualize gene expression, and features were
visualized on UMAP plots with function FeaturePlot. Differ-
ential expressions in each cluster between LD and DKD
subjects were calculated using FindMarkers (min.pct50.2,
logfc.threshold50.25).

Statistical Analyses
Analyses were performed using RStudio (v4.1.3) (R Develop-
ment Core Team, Vienna, Austria). For linear regression
model, eGFR and interstitial fibrosis score were log2-
transformed to approximate the normal distribution. False
discovery rate (FDR) was calculated by Benjamin–Hochberg
procedure. Proteins or genes with FDR,0.05 were considered
significant. In correlation analysis, Pearson correlation coef-
ficient was used. To identify unbiased subgroups on the basis
of proteomics, unsupervised hierarchical clustering was per-
formed on the scaled data using the Wards method with
Manhattan distances.37 The optimal number of clusters was
determined by average silhouette method38,39 in the factoextra
function and found to be 2.

RESULTS

Clinical and Histological Characteristics of the Study
Population
Our primary dataset contained 33 human kidney cortical
samples; 23 samples from subjects with DKD and ten healthy
controls. The DKD diagnosis was established based on eGFR
and histological lesions. In our dataset, the mean eGFR,
calculated by Chronic Kidney Disease Epidemiology Collab-

oration (CKD-EPI) formula,40 was 40615 ml/min per 1.73 m2

for DKD samples (ranging from 7 to 59 ml/min per 1.73 m2)
and 110618 ml/min per 1.73 m2 for the controls (ranging
from 91 to 143 ml/min per 1.73 m2). The mean age was 67612
years for the DKD group and 44612 years for the control
group. Subjects with DKD were more frequently male (65%),
mostly White (96%), and had higher body mass index (BMI).
The full clinical information and pathological characterization
are presented in Table 1. Medication data and proteinuria were
collected from charts; however, they were incomplete and
therefore not used in this analysis. We performed histological
scoring of the kidney samples by characterizing 19 different
histological lesions by a pathologist who was not aware of the
clinical information, as we published earlier.3 We found that
the degree of interstitial fibrosis exhibited a negative correla-
tion with eGFR (R520.59, P , 0.001) (Figure 1A).12 Sim-
ilarly, glomerulosclerosis negatively correlated with kidney
function (R520.49, P , 0.01) (Supplemental Figure 1A).
Interstitial fibrosis positively correlated with glomerular scle-
rosis (R50.87, P 5 3.7e-11) (Supplemental Figure 1B).

Unbiased Proteomics of Human DKD Samples
To understand changes in protein levels in human kidney
samples, we first performed unsupervised hierarchical clus-
tering of the proteomics data using 1305 proteins from the
primary dataset (Figure 1B). Our analysis identified two well-
separated clusters, one mostly containing control samples
while the second mostly containing DKD samples, suggesting
global protein expression changes in DKD kidneys.

Then, we set to define protein expression profiles that cor-
relate with eGFR or tubulointerstitial fibrosis in our study group.
Using a linear regression model and eGFR as a dependent
variable, our analysis identified 14 proteins whose expression
showed significant linear association with eGFR (FDR ,0.05)
after adjusting for age, race, sex, and BMI (Supplemental

Table 1. Patient characteristics of primary database

Characteristic
Control
(n510)

DKD
(n523)

Age, yr (SD) 44.3 (12.1) 67.0 (11.9)
Male, % 50.0 65.2
Race, n (%)
White 5 (50) 22 (95.6)
Black 5 (50) 1 (4.4)
DM 0 (0) 23 (100)
HTN 0 (0) 22 (95.6)

BMI, kg/m2 (SD) 28.5 (8.2) 34.2 (9.5)
SBP, mm Hg (SD) 124 (9) 144 (21)
DBP, mm Hg (SD) 76 (8) 73 (11)
eGFR, ml/min per 1.73 m2 (SD) 110 (18) 40 (16)
Serum glucose, mg/dl (SD) 105 (22) 142 (28)
Histology
Glomerulosclerosis, % (SD) 1.9 (2.7) 24.7 (30.8)
Interstitial fibrosis, % (SD) 3.0 (5.0) 30.4 (30.9)

Data are presented asmean and standard deviation with themedian values or
percentage (%). DKD, diabetic kidney disease; DM, diabetes mellitus; HTN,
hypertension; BMI, body mass index; SBP, systolic blood pressure; DBP,
diastolic blood pressure.

1282 JASN JASN 34: 1279–1291, 2023

CLINICAL RESEARCH www.jasn.org

D
ow

nloaded from
 http://journals.lw

w
.com

/jasn by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

4/O
A

V
pD

D
a8K

2+
Y

a6H
515kE

=
 on 08/03/2023

https://atlas.kpmp.org/repository/
https://atlas.kpmp.org/repository/
http://links.lww.com/JSN/E415
http://links.lww.com/JSN/E415
http://links.lww.com/JSN/E408


Spreadsheet 2). Next, we aimed to identify proteins whose
expression correlates with tubulointerstitial fibrosis. Using a lin-
ear regression model, we found that the level of 152 proteins was
associated with tubulointerstitial fibrosis after adjusting for
covariates (Table 2 and Supplemental Spreadsheet 3). Proteins
whose levels correlated with fibrosis had diverse functions,
including cell surface receptor signaling, cellular response–related
pathways, developmental pathways, and cell adhesion
(Supplemental Figure 1C and Supplemental Spreadsheet 4).

To understand similarities and differences between eGFR-
associated and fibrosis-associated proteins, we found 13 proteins
whose levels were associated with both eGFR and interstitial
fibrosis (Figure 1C), confirming the relatedness of eGFR and
fibrosis12 of those 12 proteins had negative correlation with
eGFR and positive correlation with fibrosis (Supplemental
Spreadsheet 2 and Supplemental Spreadsheet 3).

Our analysis identified MMP7 as the risk protein with the
largest effect estimate for associations with both eGFR
and interstitial fibrosis (Figure 1D). MMP7 levels showed a
negative correlation with eGFR (Supplemental Figure 1D) and a
positive correlationwith fibrosis (Figure 1E). TheMMP7 level was
higher in DKD (Supplemental Figure 1E), indicating that MMP7
is a biomarker of kidney fibrosis. Given the biological re-
lationship betweenMMP7 and fibrosis, we looked at all matrix
metalloproteases (MMPs) and their inhibitor tissue inhibitor
of metalloproteinases (TIMPs) in our dataset. MMP7 had the
most apparent correlation with eGFR and tubulointerstitial
fibrosis (Figure 2). In addition, several MMP7-correlated pro-
teins were included in the list of fibrosis-associated proteins
(Supplemental Spreadsheet 3 and Supplemental Spreadsheet 5),
highlighting that MMP7 is one of the key proteins in DKD-
associated fibrosis.

Figure 1. Unbiased proteomics analysis of human DKD kidney samples. (A) Scatterplot of eGFR (ml/min per 1.73 m2) and degree of
interstitial fibrosis (Pearson R of 20.59). (B) Hierarchical clustering on the basis of proteomics data. (C) Venn diagram of proteins
correlated with eGFR and interstitial fibrosis. (D) Scatterplot of correlation of coefficients between 12 proteins and eGFR and fibrosis.
(E) Scatterplots of Matrix Metalloproteinase 7 (MMP7) expression measured by SOMAmer array (x axis) and degree of interstitial fibrosis
(y axis) (Pearson R of 0.53). Figure 1 can be viewed in color online at www.jasn.org.

Table 2. Top ten proteins associated with renal interstitial fibrosis in linear regression model, adjusted for age, sex, race, and
body mass index

Symbol Protein Name Coefficient P Value FDR

RARRES2 Retinoic acid receptor responder protein 2 0.577 1.17E-07 1.53E-04
CCL21 C-C motif chemokine 21 1.306 3.31E-06 8.68E-04
TPSB2 Tryptase b-2 1.157 2.53E-06 8.68E-04
CCDC80 Coiled-coil domain-containing protein 80 1.076 3.32E-06 8.68E-04
YWHAE 14-3-3 protein epsilon 20.418 1.95E-06 8.68E-04
KEAP1 Kelch-like ECH-associated protein 1 20.109 7.74E-06 1.68E-03
MMP7 Matrilysin 1.242 1.77E-05 2.30E-03
THBS2 Thrombospondin-2 1.094 1.87E-05 2.30E-03
CCL19 C-C motif chemokine 19 0.482 1.94E-05 2.30E-03
CHST15 Carbohydrate sulfotransferase 15 0.462 1.90E-05 2.30E-03

Coefficients were derived using the linear regression model adjusted for age, sex, race, and body mass index, in which fibrosis scores were transformed into log2
(fibrosis11). P values were adjusted for FDR. FDR, false discovery rate; MMP7, matrix metalloprotease 7.
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Figure 2. Correlation of matrix metalloproteases (MMPs) and inhibitor tissue inhibitor of metalloproteinases (TIMPs) with eGFR
and/or interstitial fibrosis. Coefficients were derived using the linear regression model adjusted for age, sex, race, and BMI; P values
were adjusted for FDR. *P , 0.05; **P , 0.01. Figure 2 can be viewed in color online at www.jasn.org.

Figure 3. WGCNA of human DKD kidney samples. (A) Hierarchical clustering dendrogram of the proteins. (B) Heatmap representing
the topological overlap matrix among all proteins in the analysis. (C) Dendrogram of eight module eigenproteins and two clinical traits
(eGFR and interstitial fibrosis). (D) Eigenprotein adjacency heatmap with eGFR and interstitial fibrosis (see Methods section). (E) Cor-
relation of module eigenproteins with clinical characteristics. Each row corresponds to a module eigenprotein, and the columns are
clinical traits. The values in the cells are presented as “Pearson R (P value)” and color-coded by direction and degree of the correlation
(red5positive correlation; blue5negative correlation). (F) Gene ontology pathway analysis of the top pathways enriched in the protein
sets of the WGCNA brown module. Con, control; GS, glomerular sclerosis; HTN, hypertension. Figure 3 can be viewed in color online
at www.jasn.org.
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Unbiased Weighted Gene Correlation Network
Analysis Identified the Important Module Correlating
with Renal Phenotypes
To identify coexpressed proteins and modules in our dataset
in an unbiased manner, we performed WGCNA. WGCNA
lead to the identification of 8 coexpressed protein modules
(Figure 3, A–D). We next examined the association between
these eightmodules and clinical, demographics, and histological
changes. eGFR and interstitial fibrosis clustered with different
sets of protein expression modules, indicating important dif-
ferences between these disease manifestations (Figure 3C and
Supplemental Figure 1F). We further studied the association
between each of the modules and clinical and histological traits.
Focusing on eGFR and fibrosis, we found that the brown
module, in whichMMP7 was included, had the best correlation
with both eGFR and fibrosis (Figure 3E). This module was
enriched for proteins encoding for immune cell–related path-
ways (Figure 3F and Supplemental Spreadsheet 4) in the func-
tional annotation and pathway enrichment analysis. To better
understand the brown module, the protein–protein interaction
network was constructed by STRING database, together with
the top significant submodule (Supplemental Figure 1G), in
which other MMPs and TIMPs, such as MMP2 and TIMP2,
were also included.

Tissue Transcript Levels Show Modest Correlation with
Protein Levels
We next investigated the correlation of gene expression levels
from RNA sequencing and protein levels analyzed in the same
33 samples. To integrate mRNA expression with protein

measurements, only the mRNA corresponding to 1305 SO-
MAmers (1225 genes) were examined (Supplemental
Spreadsheet 6). The mRNA–protein correlation was modest
when all sample data were pooled (R50.46, R250.21,
P , 1.0e-300) (Figure 4A) and when samples were analyzed
individually (R50.46, R250.21, P 5 4.5e-64) (Figure 4B).
This potentially indicates that a large fraction of the variance in
protein expression is not reflected by gene expression, under-
scoring the importance of protein profiling. Future studies
should examine the role of consistency in measurement and
normalizations of the aptamer dataset. Regarding the MMP7
expression, the mRNA–protein correlation was higher (R50.64,
P 5 6.4e-05) (Figure 4C). We observed a significant correlation
between MMP7 transcript and eGFR (R520.53, P , 0.01)
(Figure 4D) as well as interstitial fibrosis (R50.52, P , 0.01)
(Figure 4E) which was consistent with the patterns in
the proteomics data. Furthermore, MMP7 transcript expres-
sions were higher in DKD compared with the control
group (Figure 4F).

The Cell Types Expressing MMP7 in Human DKD
Kidneys
To understand which cell type expresses MMP7 in human
DKD kidneys, we analyzed the transcriptome of 64,333 indi-
vidual cells from of DKD or LD human kidneys. We obtained
information for 14 DKD kidneys (42,870 cells) and 20 LD
kidneys (21,463 cells) (Figure 5A) from the NIDDK KPMP
repository (https://atlas.kpmp.org/repository/),36 as described
in Methods section. The cells were classified into 13 clusters by
the KPMP team (Supplemental Spreadsheet 7), and we found

Figure 4. Bulk RNA-seq displayed modest correlation with proteomics. (A) Correlation between kidney bulk RNA-seq and pro-
teomics using all samples. (B) Correlation between bulk RNA-seq and proteomics using a representative sample. (C) Correlation of
MMP7 expression between RNA and protein, with Pearson R of 0.64. (D) Correlation between MMP7 expression examined by bulk
RNA-seq and eGFR, with Pearson R of 20.53. (E) Correlation between MMP7 expression examined by bulk RNA-seq and interstitial
fibrosis, with Pearson R of 0.52. (F) Box plots showing MMP7 expression examined by bulk RNA-seq in DKD and control subjects. P values
were calculated with the Wilcoxon rank-sum test (for two group comparison). Figure 4 can be viewed in color online at www.jasn.org.
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thatMMP7 was expressed by multiple kidney tubule epithelial
cells (Figure 5, B–D). To identify cell types with increased
MMP7 levels in DKD, we evaluated the differentially expressed
genes in all clusters between DKD and LD. MMP7 was sig-
nificantly (FDR ,0.05) higher in proximal tubule (PT), con-
necting tubule (CNT), and principal cell (PC) clusters
(Supplemental Spreadsheet 8). PT and CNT cells showed
the largest change in gene expression (Figure 5, E and F,
Supplemental Figure 2A). Taken together, these results in-
dicate that PT, CNT, and PC are the likely sources of increased
MMP7 levels in DKD kidneys.

Kidney TissueMMP7Gene and Protein Levels Correlate
with eGFR and Fibrosis in External Datasets
Correlations between MMP7 gene and protein expression
and kidney function and fibrosis were investigated in ex-
ternal datasets. Gene expression data (RNA-seq) from 433

microdissected human kidney tubule samples were ana-
lyzed, including healthy controls, diabetes, HTN, CKD, and
DKD with varying degrees of fibrosis and kidney function41

(validation dataset 1, Supplemental Table 1). MMP7
expression strongly and significantly correlated with the
severity of interstitial fibrosis (R50.55, P 5 2.3e-34)
(Figure 6A) and negatively correlated with the level of
eGFR (R520.35, P 5 1.7e-13) (Supplemental Figure 2B)
in this dataset.

In addition, the protein level of MMP7 was examined in an
external dataset of 186 human kidney samples (34 from DKD,
152 from control) (validation dataset 2, Supplemental Table 1).
The MMP7 protein level showed a negative correlation with
eGFR (R520.41, P 5 1.2e-08) (Figure 6B) in this dataset as
well. Together, these findings confirm the consistent correlations
between kidney MMP7 protein and RNA expression, interstitial
fibrosis, and eGFR across multiple validation datasets.

Figure 5. Cellular expression of MMP7 in human kidney single-cell RNA-seq. (A) UMAP showing 13 cell clusters (see Methods
section). Assigned cell types are summarized in the Supplemental Spreadsheet 6. (B) Feature plots showing the expression of MMP7 in
DKD subjects and LD. (C) Bubble plots showing MMP7 expression across 13 clusters between DKD subjects and LD. The size of the
circle indicates the percent of positive cells, and the color indicates the level of expression. (D) Violin plots showing the MMP7 ex-
pression across 13 clusters between DKD subjects and LD. (E–G) Volcano plots of DEGs between DKD and LD in PT (E), CNT (F), and
PC (G) clusters identified in the single-cell data. The x axis is log2-FC, and y axis is the statistical significance FDR52log10. FDR ,0.05
and |log2FC|.0.58 (5FC of 1.5) were considered criteria for DEG selection. Genes above the horizontal dotted gray line had
FDR ,0.05. DEG, differentially expressed gene; FC, fold change. Figure 5 can be viewed in color online at www.jasn.org.
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Circulating MMP7 Predicts Kidney Disease Progression
in Patients with or without Diabetes
Given the strong association between tissue MMP7 protein
and fibrosis, a strong predictor of kidney failure, we investi-
gated whether circulating MMP7 could serve as a biomarker
for kidney disease progression. We analyzed the association
between MMP7 levels and eGFR decline in 1623 participants
with diabetes and 9407 participants without diabetes enrolled
in the ARIC Study (validation dataset 3, Table 3). The mean
eGFR, estimated by the 2021 CKD-EPI equation on the basis
of creatinine and cystatin C,42 was 95620 and 99616 ml/min
per 1.73 m2, respectively. Over an average follow-up of 17
years, 354 diabetic and 1190 nondiabetic participants experi-
enced eGFR decline by 50%, whereas 153 diabetic and 131
nondiabetic participants developed ESKD.

PlasmaMMP levels in participants with or without diabetes
at baseline negatively correlated with eGFR (R520.38 for
diabetic and R520.20 for nondiabetic participants) (Figure 6,
C and D). In Cox regression analyses among diabetic indi-
viduals, plasma MMP7 concentration was significantly

associated with a 2.3-fold greater risk of experiencing eGFR
decline by 50% or more (hazard ratio [HR], 2.28; 95%
confidence interval [CI], 1.92 to 2.70) and a 3.8-fold greater
risk of developing kidney failure (HR, 3.78; 95% CI, 3.00 to
4.77), respectively (Table 4). After adjusting for additional
covariates, including eGFR and smoking status, plasmaMMP7
concentration remained significantly associated with greater
risk of 50% decline of eGFR (HR, 1.77; 95% CI, 1.48 to 2.11)
and a kidney failure (HR, 2.01; 95% CI, 1.54 to 2.62) (Table 4).
In nondiabetic individuals, higher plasma MMP7 concentra-
tion was also significantly associated with greater risk of a
kidney failure (HR, 2.15; 95% CI, 1.60 to 2.89) (Table 4), after
adjusting for additional covariates. In conclusion, blood
MMP7 concentration can identify individuals with or without
diabetes who are at increased risk of progressing to kidney
failure in the general population.

DISCUSSION

This study presents the first unbiased human kidney tissue
proteomics dataset for healthy and DKD samples. The analysis
identified 14 proteins that correlated with eGFR and 152
proteins that correlated with fibrosis, with MMP7 showing
the largest effect size. The correlation between tissue MMP7
protein expression and kidney function was confirmed in an
external human kidney tissue dataset. Kidney tissue MMP7
transcript levels also correlated with fibrosis and eGFR in both
primary and in an independent external dataset. Proximal
tubules CNTs, and collecting duct cells being the most likely
sources of MMP7 in DKD. In addition, plasma MMP7 levels
were found not only correlated with kidney function but also
predicted future kidney function decline indicating that
MMP7 is a prognostic biomarker.

The lack of unbiased human kidney proteomics has been a
major gap in our understanding of human DKD development.
Mass spectrometry-based tissue proteomics has provided im-
portant initial insight into protein levels, but it has been
challenging to accurately quantify protein levels in large co-
horts. The new aptamer-based methods can quantify thou-
sands of proteins in multiple samples. Protein quantification is
critical as previous datasets analyzing blood samples indicated
that blood protein levels show a poor correlation with RNA
levels. This might not be surprising as most blood proteins are
synthesized in the liver. Paired tissue protein and RNA datasets
are rare, so the RNA–protein correlation in tissue samples is
not well understood. Our dataset shows a modest association
between transcript and protein expression in paired kidney
tissue samples, but further studies are needed to better un-
derstand the relationship between transcript and protein levels
in the kidney. Orthogonal validation will also be essential, as it
has also been reported that some aptamer probes may not be
specific or unable to accurately capture protein-level changes.

The development of kidney fibrosis is characterized by the
proliferation and transformation of fibroblasts as well as

Figure 6. Validation of the association of MMP7 with eGFR
and interstitial fibrosis in other human kidney datasets. (A)
Scatterplots of the MMP7 transcript level and the degree of fi-
brosis in 433 microdissected human kidney tubules (validation
dataset 1). (B) Scatterplots of MMP7 protein expression and eGFR
(ml/min per 1.73 m2) in 186 human DKD and control kidneys
(validation dataset 2). (C) Scatterplot of plasma MMP7 protein
levels and eGFR (ml/min per 1.73 m2) in nondiabetic participants
of ARIC (validation dataset 3). (D) Scatterplot of plasma MMP7
protein levels and eGFR (ml/min per 1.73 m2) in diabetic partic-
ipants of ARIC (validation dataset 3). Figure 6 can be viewed in
color online at www.jasn.org.
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accumulation of extracellular matrix (ECM), which is the
pathological hallmark of progressive kidney disease.43 How-
ever, the role of tissue ECM in CKD is poorly understood.
Recent studies indicate that stromal cells are responsible for
the expression of ECM components and that the ECM un-
dergoes important remodeling with MMPs being the main
proteinases involved in ECM degradation.44 MMP7 cleaves
collagen III/IV/V/IX/X/XI and proteoglycans45 and has been
extensively studied in relation to kidney disease development.
Studies have shown that MMP7 is regulated by the Wnt/b
catenin pathway and that its expression is increased in renal
fibrosis46 and AKI.47,48 Mice with genetic deletion of MMP7
were found to be protected from AKI. Therefore, the unbiased
discovery of MMP7 in human samples is strongly supported
by previous mechanistic studies.

It is important to note that previous studies have investigated
MMP7 as a DKD biomarker in patients through targeted bio-
marker studies. These studies have shown that the serum
MMP7 level was increased in patients with proteinuric DKD
subjects,49 and kidney biopsies from patients with IgA nephrop-
athy, lupus nephritis, and DKD showed higher MMP7 mRNA
or protein levels.46,50–52 Urine MMP7 concentration was asso-
ciated withmortality in patients with proteinuria andDKD.53 In
addition, circulating MMP7 was associated with DKD progres-
sion in type 2 diabetic individuals with eGFR .60 ml/min per
1.73 m2 in the Joslin Kidney Study.54 In this study, we identified
MMP7 in unbiased tissue proteomics studies and validated it in
external tissue datasets. Our findings provide new insights into
the role and source of kidney tissueMMP7 protein, and point to
MMP7 as a potential biomarker of DKD, as demonstrated by its
correlation with kidney function and prediction of future kid-
ney function decline in a community-based diabetic population
with varying degrees of kidney function.

In this study, TNF superfamily member 12 (TNFSF12),
a type II transmembrane glycoprotein of the TNF super-
family also known as TNF-like weak inducer of apoptosis
(TWEAK),55 was the only protein that correlated with eGFR
but not with interstitial fibrosis in the kidney. Previous studies
have shown that circulating TNFSF12 concentrations were
lower in subjects with type 2 diabetes56 and DKD57 and
were strongly associated with progressive renal decline58 and
the risk of kidney failure.6 However, there are conflicting
reports on the proinflammatory effects of TNFSF12 on tubular
epithelial cells and its role in nondiabetic AKI and CKD.
TNFSF12 might have proinflammatory effects on tubular ep-
ithelial cells in vitro and in vivo, but TNFSF12 blockade reduced
tubulointerstitial inflammation in AKI mice,59 and TNFSF12
might promote nondiabetic AKI and CKD.59,60 Further animal
and clinical investigations are needed to better understand the
role of TNFSF12 in the development and progression of DKD.

In this study, several limitations should be noted. First,
there is a lack of proteinuria data in the primary kidney tissue
proteomics study and in ARIC participants, which makes it
unclear whether MMP7 would improve outcome precision
after accounting for proteinuria. In addition, the small sample
size of the primary dataset limits the assessment of additional

Table 4. Circulating matrix metalloprotease 7 was associated with greater risk of eGFR decline by 50% or ESKD in
Atherosclerosis Risk In Communities participants at visit 2

Outcome Model
Non-DM (n59407) DM (n51623)

Events HR (95% CI) P Value Events HR (95% CI) P Value

eGFR 50% decline Model 1 1190 1.35 (1.23 to 1.48) 3.20E-10 354 2.28 (1.92 to 2.70) 4.44E-21
eGFR 50% decline Model 2 1190 1.24 (1.13 to 1.35) 3.66E-06 354 1.77 (1.48 to 2.11) 2.33E-10
eGFR 50% decline Model 3 1190 1.17 (1.05 to 1.29) 2.94E-03 354 1.68 (1.40 to 2.01) 1.79E-08
ESKD Model 1 131 3.94 (3.09 to 5.03) 3.93E-28 153 3.78 (3.00 to 4.77) 1.95E-29
ESKD Model 2 131 2.01 (1.51 to 2.69) 1.96E-06 153 2.01 (1.54 to 2.62) 3.27E-07
ESKD Model 3 131 2.15 (1.60 to 2.89) 3.23E-07 153 1.77 (1.35 to 2.32) 3.26E-05

Model 1 was adjusted for age, sex, and race/center; model 2 was additionally adjusted for systolic blood pressure, antihypertensive medications, prevalent
cardiovascular disease, smoking status, eGFRcrcys, HDL cholesterol levels, and total cholesterol levels; model 3 was adjusted for all previously mentioned covariates
along with the first five principal components of the proteomics data. All hazard ratios are expressed per doubling of the protein level. DM, diabetes mellitus; HR,
hazard ratio; CI, confidence interval.

Table 3. Summary of Atherosclerosis Risk In Communities
visit 2 participants characteristics

Characteristic
Non-DM
(n59407)

DM
(n51623)

Age, yr (SD) 56.8 (5.7) 58.1 (5.7)
Male (%) 4108 (43.7) 977 (45.5)
Black, n (%) 1849 (19.7) 646 (39.8)
DM, n (%) 0 (0) 1623 (100)
HTN, n (%) 2948 (31.3) 950 (58.5)
Antihypertensive medication, n (%) 2139 (22.7) 808 (49.8)
Prevalent CVD, n (%) 595 (6.3) 241 (14.8)
Current smoker, n (%) 2128 (22.6) 302 (18.6)
Former smoker, n (%) 3543 (37.7) 625 (38.5)
Total cholesterol, mmol/L (SD) 5.4 (1.0) 5.5 (1.2)
HDL cholesterol mmol/L (SD) 1.3 (0.4) 1.1 (0.4)
BMI, kg/m2 (SD) 27.3 (5.0) 31.2 (5.9)
SBP, mm Hg (SD) 120 (18) 128 (20)
eGFRcrcys, ml/min per 1.73 m2 (SD) 99 (16) 95 (20)
eGFR 50% decline, n (%) 1190 (12.7) 354 (21.8)
Follow-up to eGFR 50% decline
years (range)

24.6
(17.8–27.7)

18.3
(10.4–24.2)

Incident ESKD, n (%) 131 (1.4) 153 (9.4)
Follow-up to ESKD years (range) 25.7

(18.0–27.9)
18.5

(11.0–25.5)

Data are presented as mean (SD), median (range), or n (%). DM, diabetes
mellitus; HTN, hypertension; CVD, cardiovascular disease; BMI, body mass
index; SBP, systolic blood pressure; eGFRcrcys, eGFR on the basis of creatinine
and cystatin C.
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covariates beyond age, sex, race, and BMI in the linear re-
gression model. Although these are important limitations, the
small sample size only allows for adjustment of a limited
number of covariates without overfitting. Furthermore, there
is no follow-up information for the kidney tissue cohort, and
samples (both control and DKD) were obtained from un-
affected portions of nephrectomies. Finally, there is no in-
formation available regarding whether these associations
extend to subjects with type 1 diabetes and kidney disease.

In summary, here, we present the first in class unbiased
affinity proteomics of DKD kidneys with evaluation of gene
expression by RNA-seq, multiple validations of tissue MMP7
levels in different DKD population, and the recognition of
bloodMMP7 as a biomarker of future eGFR decline in subjects
with diabetes and with varying degree of kidney function.
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Supplemental Spreadsheet 4. DAVID gene ontology analysis for renal in-
terstitial fibrosis-associated proteins and proteins in the brown module
of WGCNA.
Supplemental Spreadsheet 5. Proteins associated with MMP7 in linear

regression model.
Supplemental Spreadsheet 6. Paired expression of 1225 mRNA and protein

levels in human kidney samples.
Supplemental Spreadsheet 7. Cell numbers of 13 clusters between LD and

DKD in the KPMP dataset.
Supplemental Spreadsheet 8. DEGs of all 13 clusters between LD and DKD

in the KPMP dataset.
Supplemental Table 1. Patient characteristics of validation database.
Supplemental Figure 1. Correlation of clinical parameters with MMP7.
Supplemental Figure 2. MMP7 expression by single-cell RNA-seq and

validation of MMP7 expression by bulk RNA-seq in kidneys.
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